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Abstract
This work addresses the problem of optimal positioning of a set of measured points

with respect to an ideal design surface. Localization refers to the process of determining the
rigid body translations and rotations which must be performed on the set of points to move
those points into closest correspondence with the design surface. In unconstrained
localization all points have equal effect on the determination of the rigid body
transformation, while constrained localization allows a subset of the points to have stronger
influence on the transformation.

The measured points in the context of this work refer to physical points in space that
are obtained by direct measurement of a manufactured marine propeller blade. The ideal
design surface refers to a surface description of the propeller blade provided by the blade
designer. Given that the measured blade is manufactured from the design surface
description, it is the task of localization to determine an optimal positioning that will bring
the measured points of the manufactured surface as close as possible to the design surface. If
the manufactured blade is repositioned in space according to the prescription of the
localization transformation, it will have the closest possible correspondence to the original
design. Direct benefits to the manufacturer may result from less wasted material in initial
castings and better ability to program postcasting work through optimal positioning of the
workpiece.

The constrained and unconstrained localization method is developed from a theoretical
basis. Applications of the localization method are investigated with examples of propeller
designs and inspection data obtained from blades that were manufactured from those designs.
Experimental results demonstrate the capabilities of the method and its applicability to
automated inspection.
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Chapter 1

INTRODUCTION

A fundamental problem in manufacturing is the need to determine if a manufactured

piece meets the requirements of the original design description from which it was made. The

evaluation of positional tolerances to ensure that a manufactured item is an acceptable

rendering of the original design is a basic element of manufacturing inspection.

In few areas of manufacturing inspection is the need for precise inspection and

evaluation of tolerances more clearly demonstrated than in the area of marine propellers.

The manufactured item is an exceedingly complex sculptured surface which must be

produced with extremely high fidelity to the original design. Very strict positional tolerances

must be achieved in a difficult manufacturing process to prevent severe compromise of the

performance of the propeller.

The inspection of marine propellers has traditionally involved highly skilled

technicians checking the surface of a manufactured propeller with numerous mechanical

gages. The gages are cut to specified dimensions by the direction of a manufacturing

engineer who interprets the specifications of the propeller designer. Although rigid

guidelines are provided for placement of the gages on the blade, errors in measurement can

result from decisions by the technician regarding "fit" or alignment of the gage on the

manufactured blade. Moreover, the direct gage measurements only evaluate the blade at the

local site where the measurement is made. A completely satisfactory method for evaluating

global compliance with specified tolerances has not been available. Often expensive and
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inefficient rework of propellers has been necessary because it was not possible to quickly and

confidently ascertain whether the manufactured product would satisfy the requirements of the

designer.

The recent development of automated methods of inspection using coordinate

measuring machines (CMM) and laser-based measuring devices has made it possible to

obtain voluminous quantities of highly accurate spatial measurements of manufactured

propellers. These robotic devices have provided a reliable source of measurement data, but

methods for best using that data are still being developed.

This thesis will address an aspect of the question of how to best utilize measured data

from manufactured propellers for the automated inspection of those propellers. It will deal

with the problem of optimal positioning of a set of measured points from a manufactured

propeller blade relative to the design surface from which the blade was manufactured. The

problem investigated in this thesis may be simply stated as follows:

Given a set of measured data points from a manufactured surface,
determine the rigid body translations and rotations which must be applied to the
set of measured data points to bring those points into closest correspondence
with the design surface from which the measured surface was manufactured.

If all measured points contribute equally to the determination of the set of
rigid body transformations, then the problem is one of unconstrained

localization.

If some measured points have greater effect on the determination of the set
of rigid body transformations than other points, then the problem is one of
constrained localization.

-8-



The thesis will develop the investigation of this problem using the following structure.

Chapter 2 will present a review of current literature relevant to the problem of

localization. Particular emphasis will be given to literature which is directly related to the

development of the localization algorithms presented in this thesis.

Chapter 3 will discuss the theoretical basis for the unconstrained localization algorithm.

It will describe the optimization problem and the procedures that are followed to obtain a

rigid body transformation matrix which is a solution to the unconstrained localization

problem.

Chapter 4 will develop the theoretical basis for the constrained localization algorithm.

It will contrast the differences between constrained and unconstrained localization and will

describe the procedures involved in the solution of the constrained problem.

Chapter 5 will present experimental results which demonstrate the applicability to the

problem of localizing manufactured marine propellers. One application involves the

localization of a simple fan blade, while another application involves the localization of a

complex marine propeller blade. In each case results are presented to demonstrate the

usefulness of the constrained and unconstrained localization methods.

Chapter 6 summarizes the results of the investigation and presents ideas for additional

work.

Appendix A will demonstrate the orthogonality of the rotational transformation matrix

that is used in this investigation.

Appendix B will derive the Jacobian matrix for the objective function used in the

unconstrained localization algorithm.
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Appendix C will use orthogonality to develop a method for determining the parameters

in a design surface of the projection of a point onto that surface to a very high degree of

accuracy. The method finds direct application in improving the accuracy of the calculation

of the minimum distance from a point to a parametric surface.

-10-
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Chapter 2

LITERATURE REVIEW

There has been much interest in the problem of localization in recent years and the

current literature reveals some aspects of methods that have been used in developing

solutions to the problem. This chapter will review some of the literature that is relevant to

the localization problem and the work of this investigation. The intent is to provide some

pertinent background information which will give the reader a broader perspective

concerning this particular work.

Localization of surfaces was accomplished by Thome using a least squares matching of

associated boundary edges [Thome 85]. Gunnarsson developed a localization method

between a set of points and parametric surfaces by dynamically faceting the design surface

and finding a rigid body transformation matrix which minimizes the sum of squared

distances from the data points to associated planar faces [Gunnarsson 87a], [Gunnarsson

87b]. This formulation required the solution of a constrained minimization problem with 12

unknowns, which are the elements of the rotation matrix with three translations, and 6

constraints which are the necessary relations between elements of the Euclidean rotation

matrix.

One question that is intrinsic to the formulation of the localization problem is that of

selection of an appropriate norm to use in distance minimization. Bourdet and Clement

present an analysis of this problem in [Bourdet 88]. They show, through the use of a

small-displacement screw linearization model, that the L. (or minimax) norm reduces form

error when compared to the L2 (or least-squares) norm by approximately 15 per cent for a

-11-



small number of points. The improvement however disappears when the number of points is

greater than twenty. In contrast, the L norm is superior to the L. norm in its usefulness for

statistically detecting aberrant points in a particular data set. Moreover, the L.. norm was

shown to require much greater computational time than the L2 norm. The general guidelines

of the paper can be summarized by saying that for point sets of fewer than 12 points the L.

norm should be used, while the L, norm should be used for point sets of greater than 12

points. An interesting algorithm which allows for computation of both the L2 and the L.

norms at the same time is presented in [Goch 90].

Some of the theoretical framework upon which this work is based is presented by Alt,

Mehlhom, Wagener and Welzl in [Alt 88]. The writers of the paper demonstrate some

algorithms which pertain to the problem of mapping congruent objects A, B in 9t" from one

to the other using geometric transformations involving rotations, translation, reflections, and

stretching. Although the algorithms developed in this thesis do not directly address reflection

and stretching, the mapping problem is essentially the same one. A significant finding in

[Alt 88] is that exact congruencies are not possible using measured data. Even small

perturbations in the measurements will destroy conguencies between the two geometries.

They therefore establish the approximate congruence problem with tolerance e, where the

maximum distance between two corresponding sets of points is less than or equal to e. This

problem is shown to have a computational upper bound of O(n3 log n) for either L2 or L..

norms, where n is the number of points, when the sets of points are assumed to be known and

a congruency relationship exists between the two point sets. The writers of the paper deal

only with point sets; they do not discuss the particular problem of mapping approximately

congruent point sets to a surface.

-12-



Imai, Sumino and Imai continue work on the problem of mapping point sets in [Imai

88]. They develop a minimization algorithm which greatly improves the theoretical

efficiency of the methods of Alt, et al. They show that, by using their algorithm, the L norm

problem has a computational upper bound of O(n3) and the L. norm problem has a

computational upper bound of O(n2 + n log n) in the worst case, where n is again the number

of points.

An essential element of the localization algorithms presented in this thesis is the use of

orthogonal projection methods of curves onto surfaces to locate nearest points in the

parametric space of a design surface. These methods were developed originally by Pegna

and Wolter in [Pegna 90]. In this paper a space curve is mapped onto a surface by tracing a

surface curve whose points are connected to the space curve by surface normals. The tracing

is achieved by solving a tensorial differential equation in the parametric space of the surface.

Another concept that is important in this work was developed by Kriezis, Patrikalakis

and Wolter in [Kriezis 90], [Kriezis 91] for use in the solution of surface intersection

problems. It is the oriented distance function which is defined as the inner product between a

vector from a given point to its nearest point on a surface, and the unit normal vector of the

surface at that point. The method is used in formulating the constrained localization problem

of this investigation under the assumption that the two vectors are collinear.

The fundamental basis for the work of this thesis applied to the unconstrained

localization problem derives from earlier work presented by Bardis and Patrikalakis in

[Patrikalakis 90]. In this work positional tolerances were represented in terms of a ball offset

tolerance region around an ideal rational spline surface (design surface). The tolerance

region bounding surfaces were approximated by rational B-splines. The manufactured

surface (target surface), known either in terms of a lattice of measured points or as a

-13-



simulated surface from numerical or analytical predictions, was then optimally positioned

with respect to the ideal design surface by minimizing the L,2 distance norm. After

localization, the target surface could be tested for intersection with the boundaries of the

tolerance region. If the target surface is found to be entirely within this tolerance region, then

the agreement would be considered satisfactory. These unconstrained localization techniques

were further developed to improve their computational efficiency, and they are presented in a

paper coauthored by this writer [Bardis 91].

-14-



Chapter 3

UNCONSTRAINED LOCALIZATION

3.1 Introduction

Localization can be defined as the problem of determining the optimal positioning

of a set of measured points relative to a design surface. If all measured data points have

equal effect on the determination of this optimal positioning, then the localization

problem can be defined as a problem of unconstrained localization.

The localization problem can be formulated as an optimal parameter estimation

problem involving six parameters. Those six parameters are the three translations and

three Euler angles which correspond to a general three-dimensional translation and

rotation of a rigid body in space. The problem can be formulated as an unconstrained

minimization, where the objective function of the minimization is the sum of squared

minimum distances of a set of measured points from a design surface. In this context the

measured points represent physical points in space that are determined by direct

measurement of a manufactured surface. The design surface refers to the underlying

design description that is used to produce the manufactured surface. The unconstrained

localization problem is then the problem of estimating the six parameters of a rigid body

transformation which will bring the set of equally weighted measured points into closest

correspondence with the design surface.

-15-
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3.2 Problem Formulation

Consider a parametric surface P(u, v), which will be called the design surface,

representing the desired design geometry. Consider also a set of m points R;,

1 < i 5 m, R; E 9t3, which will be called measured points. Finally, consider another set

of m points Q;, 1 < i < m, in the design surface P(u, v) which are the nearest points to

each measured point R;. It is assumed that the nearest points Qi are unig~u and are the

orthogonal proiections of the points R; onto P(u, v). The points Q will be subsequently

called projections.

The assumption that the nearest points Q; are unique and also orthogonal

projections of the points R; onto P(u, v) is reasonable for the inspection problem that is

being investigated. The measured points of a manufactured propeller blade can be

expected to be very close to the surface of the propeller and relatively far from the medial

axis of the blade. It can be shown that under some reasonable conditions, the nearest

point will be unique [Kriezis 91]. Furthermore, the only places on the blade where the

orthogonal projection condition could be expected to not be valid would be at the trailing

edge, root edge or tip of the blade, and these locations are ones where measurements

cannot be readily made anyway because of the edge discontinuity.'

The objective function for minimization is the sum of squared minimum distances

of each point from the design surface. Each measured point R; has a nearest point Qi on

the design surface. The minimum distance from each measured point to the design

'Even though the assumption of the existence of a unique nearest point which is also an
orthogonal projection of a measured point to the design surface is not unrealistic for this
problem, its importance cannot be overemphasized. It forms a foundation for much of the
theoretical development of this thesis.

-16-



surface can be simply defined as the Euclidean distance between the points Ri and Qi. If

the distance between two points is denoted by d(P1, P2) then the minimum distance from a

measured point Ri to the design surface P(u, v) is defined as

d(R;, Q,) = I R; - Q I = min, d [R,, P(u,v)] (3-1)

The squared minimum distance is

(R, - Q;) . (R; - Q,) = [d(R,, Q,)]2  (3-2)

and the objective function becomes

m
OF = X [d (R;, Q)] 2  (3-3)

i-1

The parametric surface is assumed to be an untrimmed rational B-spline (NURBS)

patch of orders M in u, and N in v, (0 5 u, v < 1). The surface is further assumed to have

continuous first order partial derivatives (C' continuity). The design surface patch is then

of the form

m-ln-I

1 7 hiP,.JBiM,(u)B,N(v)N(u ,V) -O (3-4)MNm-lUV n-n-1

. 1 hB;,m(u)B,N(v)
i O j-O

P,, (0 i _ m - 1, 0 j 5 n - 1) are the vertices of the associated control polyhedron and

hq, (0 < i < m - 1, 0 < j n - 1) are positive weights. B1 v(u) and Bj,'v) are the B-spline

basis functions over open knot vectors [Gordon 74] with variable knot spacing of

U = (uo, u ... , um +M-1) (3-5)

V = (VO, V1,..., Vn+N- ) (3-6)

-17-



P

(Ri, - Q;) * (R,, - Q,) = [d(Ri,, Q,)] 2 (3-7)

and the objective function for multiple patches becomes

n mj
OF = , 1 [d(Rqi,Q;j)] 2

j=li-1
(3-8)

3.3 Localization Transformation

The localization procedure that is used to determine the optimum rigid body

transformation for the measured points consists of minimizing the objective function of

(3-3) by calculating values for the three rotations and three translations which are the six

parameters of a rigid body transformation.

The three rotational parameters of the rigid body transformation are given by the

angles Vi, 0 and (p (Euler angles) which represent rotations about the x, y and z axes

-18-

The goal of the localization problem is to obtain an optimal rigid body

transformation for operation on the set of measured points, Ri, so that those points will

correspond as closely as possible to the design surface, P(u, v).

It is possible to generalize the objective function to accomodate multiple untrimmed

patches using analogs of the equations for a single patch. Consider n patches such that

Pj(u, v), 1 5 j < n, represents the jth patch, and R;i , 1 5 i < m , 1 < j < n, RY e 91,

represents the ith measured point associated with the jth patch. If Qii now represents the

minimum distance orthogonal projection of Rii onto the design surface Pj(u, v), then the

squared minimum distance for multiple patches becomes



respectively. The three translational parameters are represented as elements of a

translation vector t, having components tx, ty and t, for translations along each respective

axis.

If the set of measured points of the localization problem is operated upon by

successive rotations followed by successive translations, then a new set of points, r;, can

be obtained from the original measured points by the operation

r; = [C]R; + t (3-9)

In equation (3-6) the matrix [C] is defined as the rotational transformation

matrix, which is obtained by multiplying the matrices associated with rotations about

each coordinate axis. If rotations are ordered in the sequence rotation by angle (p about

the z-axis, followed by rotation by angle 0 about the y-axis, followed finally by rotation

by angle y about the x-axis, then the matrix [C] is given by

1 0 0 cos 0 0 sin W cos -sin 0)
[C] = 0 cosy -sin i 0 1 0 sin cos, 0 (3-10)

O sin V cosl , -sin 0 cos O, 0 0 1,

or

cos 0 cos 4 - cos 0sin sin0
[C] = cosysinO+sin0sinycosO cosycoso-sinOsinosinV -sin cosO (3-11)

sinysino- sinecosocos sinAcosO+sin0sincosAV cos 0 cos A)

The matrix [C] is an orthogonal matrix, having the property [C] [C]T = [C]T [C] = 13,

where 13 is the identity matrix of dimension 3.2

2 A demonstration showing that [C] is orthogonal can be found in Appendix A.
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3.4 Localization Algorithm

The localization algorithm is the unconstrained minimization of the objective

function given as equation (3-3). The process involves iterative operations on the set of

measured points R;, producing new sets of transformed points according to equation

(3-9). If r; is a transformed point given by equation (3-9), and qi is the minimum distance

orthogonal projection of the transformed point onto the design surface, then the minimum

distance squared from ri to P(u, v), [d(ri, qi)] 2, is defined by the following equation which

follows directly from equation (3-2):

[d(r;, q)]2 = (r; - q4 ) * (r - q) (3-12)

Using the transformed points r; and the corresponding projections q; to calculate the

squared minimum distance at each iteration step, the iterative process continues until a

minimum is reached. This minimization can be simply stated as the following:

Determine , 0, V, tx, ty, t,, such that

] (3-13)
OF (, 0, y, t,, t,, t,) = [d(r, q)(3-13)

i-I

is minimized.

An alternative objective function would be the minimax (or Tschebyscheff norm),

L. , where

OF( , 0, , tx , t, t) = max, II Sup [d(r;, q)] - Inf [d(r;, c)] (3-14)

is minimized instead of equation (3-13). Such a norm allows calculation of the

parameters minimizing the maximum of the minimum distance of all measured points

from the design surface. However an objective function of this type is much harder to
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implement for a large number of points, and [Bourdet 88] has shown that no significant

improvement over the L2 norm results if the number of measured points is greater than

about 20.

Determination of the minimum distance from a point to a parametric surface using

(3-1) involves the calculation of a minimum with respect to the design surface parameters

u and v. A modified Newton algorithm implemented in the Numerical Algorithm Group

routine E04KCF, [Gill 76], [NAG 89], is used with an initial guess of the minimum

distance position provided by using the u, v parameters of an orthogonal projection onto

PM,N(u, v) of B-spline curves that are fitted through selected sets of data points. This

method uses the orthogonal projection techniques of curves on surfaces developed in

[Pegna 90]. It has resulted in very good computational efficiency for two reasons:

1. An exhaustive search of PM,N(U, v) to compute minimum distance needs to be

performed only once for the end point of each B-spline curve to find its

minimum distance orthogonal projection.

2. The B-spline approximation for the measured data can be very rough.

The modified Newton algorithm used for calculation of the distance of each point to

the design surface behaves well if r; is close to PM,N(U, v). For the small rotations and

translations that are performed on each point using (3-9) it is unlikely that several local

minima of d(ri, PMN(U, v)) will interfere with the process.

The unknown quantities , 0, ,, tx, ty, t, which render the objective function (3-2)

minimum are computed by applying a quasi-Newton algorithm implemented in

Numerical Algorithms Group routine E04JAF. Estimates of the Jacobian and Hessian of
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OF(4), 0, , tx, ty, t) are used to generate a series of feasible sixtuples converging to a

minimum, [Gill 74], [NAG 89]. 3 The initial guess of the unknown quantities is chosen as

the zero vector.

After one calculation of rotations and translations, new points r; are created using

equation (3-9). The process continues until a minimum for the objective function is

achieved within a tolerance level specified by the user. At the conclusion of the process

the user will be provided with an optimal prescription for the three rotations and three

translations which should be applied to the measured points to bring them into closest

correspondence with the design surface.

3 The Jacobian of the objective function is estimated in the NAG routine E04JAF by
difference quotients. Direct calculation of the Jacobian might however improve the
performance and accuracy of the quasi-Newton algorithm if implemented in another routine.
The derivation of the Jacobian for the objective function is therefore provided in Appendix
B.
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Chapter 4

CONSTRAINED LOCALIZATION

4.1 Introduction

Unconstrained localization addresses the problem of determining the optimal

positioning of a set of measured points relative to a design surface when each measured

point has an equal effect on the determination of positioning. Constrained localization,

on the other hand, involves the problem of determining a feasible, but not necessarily

optimal, positioning of a set of measured points relative to a design surface when subsets

of the measured points can have unequal effects on the determination of positioning.

The unconstrained localization problem seeks to minimize one global objective

function so that measured points are all collectively brought as close to the design surface

as possible. In this problem each point contributes with the same weight to the

minimization of the objective function. In contrast, the constrained localization problem

starts with the rotation and translation produced by the minimized objective function of

the unconstrained localization problem and determines a rigid body transformation which

will allow the measured points to satisfy a set of nonlinear constraints. The constrained

localization problem does not minimize an objective function, but rather uses

minimization techniques to find a feasible transformation that will satisfy the constraints

imposed by a set of constraint functions. Satisfying the constraint functions has the effect

of changing the importance of each measured point.
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The need for constrained localization of marine propellers is evident because of the

tighter positional tolerances that are required near the leading edge of a blade. A method

is required which will provide for greater influence on the localization by measured

points that are close to the leading edge.

The typical design of a propeller blade provides a convenient way to construct the

constrained localization problem. Normally the blade is described by the designer in

terms of a NURBS surface with two sets of isoparameter lines running approximately

parallel and perpendicular to the leading edge of the blade. In this manner the

isoparameter lines form a grid in the spanwise and chordwise directions of the blade.

Two spanwise isoparameter lines can be assigned to bound the leading edge region of the

blade. Constraints on the localization can then be imposed based upon whether or not

parametric values of the minimum distance orthogonal projections of measured points on

the design surface lie inside or outside of the boundaries defined by the two isoparameter

lines. If the points within the two isoparameter lines in the parametric space of the

surface are nearest points to the measured points, then measured points near the leading

edge of the blade can have greater effect upon the localized positioning as required. This

is accomplished by associating each measured point with its respective projection, and

using the position of the projection in the parametric space of the design surface to

determine the constrained function and consequent effect of the measured point upon the

localization.

The constrained localization method assumes that the region of the design surface

that is associated with each measured point by its projection on the design surface does

not change during the localization, This assumption may not always be valid if the

projections of measured points are very close to the isoparameter lines which bound the
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leading edge region of the blade. For the small rotations and translations that are

anticipated for this method, it is not expected that the projections of many measured

points will change regions during the localization. Furthermore, even if such a

phenomenon occurs the overall effects on the inspection problem are expected to be

relatively small.

4.2 Problem Formulation

The constrained localization problem can be formulated as a nonlinear constrained

optimization problem. The constraints are limits on distances of measured points from

the design surface. They are determined by positions in the parametric space of the

design surface of points which are nearest to measured points. In the formulation of this

problem the constraints are inequality bounds on the constraint function which are

allowed to have only two possible values.4 If the points in the design surface lie within

the isoparametric boundaries which define the leading edge of the blade, then the

associated constraint on the optimization will have one value; if the points lie outside of

this boundary, then the associated constraint will have another (larger) value. The

problem is inhererently nonlinear because the rotation transformations which operate on

the measured points to change their distances from the design surface are formed from

combinations of transcendental functions in three independent variables.

4 Permitting only two values for the constraints reduces the complexity of the problem, but
may make it more difficult to solve because of the forced discontinuity at the boundary. An
alternative formulation would provide a transitional region for the constraint function to
mitigate the transition boundary problem.
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4.2.1 Global Objective Function

It is assumed in the formulation of the constrained localization problem that the

unconstrained localization problem has been previously solved using the techniques of

Chapter 3. In this case the objective function given by

m

OF = , [dR,]i2  (4-1)

has already been minimized. This means that at the beginning of the constrained

localization an optimal global positioning to place the set of measured points at the

minimum distance from the design surface has already been determined. Given this

initial condition there is no need to further minimize a global objective function. On

the other hand, constraint functions for each measured point must be determined, and

a solution procedure must be performed to find an appropriate positioning which will

satisfy the constraints. Since it is assumed that the constrained localization starts from

a position of global optimization, it is expected that the constrained localization

procedure will not produce an improvement in the global result obtained from the

unconstrained localization. A satisfactory result will be to find a positioning of the

measured points which satisfies the constraints. This result will not be necessarily

unique.

The assumptions associated with the global objective function for the

constrained localization problem can be summarized in the following statements:

(1) The constrained localization problem starts from a position of global

optimization which is the solution to the unconstrained localization.

(2) The constrained localization cannot improve the global result of the
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unconstrained localization and therefore does not attempt a global optimization.

(3) A satisfactory result is a solution, not necessarily unique, which satisfies the

constraints.

4.2.2 Constraint Function Definition

The selection of an appropriate constraint function is fundamental to the

formulation of the constrained localization problem. The constraint function must

certainly be a distance measure, but careful definition of this measure may facilitate

the solution of the problem.

4.2.2.1 Squared Distance Function

Consider again the parametric design surface, P(u, v), the set of m measured

points, R;, and the set of m unique nearest points Qi on P(u, v), which are also

assumed to be orthogonal projections. The minimum distance from a measured

point R; to the design surface P(u, v) was defined as

d(R;, Q,) = I R, - Q, I = min%, d [R;, P(u, v)] (4-2)

and the minimum distance squared was given as

(R; - Qi) . (Ri - Qi) = [d(R;, Qi)]2 (4-3)

This function provides a measure of the proximity of a point to a surface and

was chosen as the objective function for the unconstrained localization. However

the squared distance function is not the best one to use for every type of problem.

For minimization problems involving very small changes in magnitude, the

squared function introduces inaccuracy because all changes are squared. This
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effect is manifested by reducing the number of decimal places that can be

calculated with confidence by half. (From another point of view, double precision

calculations effectively become single precision calculations.) Moreover the

squared distance function as an unsigned function causes all sense of position of a

measured point relative to the design surface normal vector orientation to be lost.

The loss of positional sense of a measured point relative to the design surface is

particularly undesirable in the context of using the process as an inspection tool. A

manufacturing engineer evaluating the results of a localization operation would

want to know whether he should cut or weld a manufactured blade. Therefore

positional sense is essential.

Good results were obtained for the unconstrained problem using the squared

distance objective function, notwithstanding its previously mentioned

shortcomings.5 However it was judged at the beginning of the investigation of the

constrained problem that the squared distance function might not provide

sufficient numerical accuracy for solution of this more difficult nonlinear problem.

An alternative distance function was desired specifically to enhance the numerical

accuracy that could be expected from calculations.

4.2.2.2 Oriented Distance Function

A different method for determining the distance from a point to a surface

using an oriented distance function was introduced in [Kriezis 90], [Kriezis 91].

5 An expanded discussion of the results of the unconstrained localization is provided in
Chapter 5.
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This function does not use a squared quantity, and it retains the sense of relative

position between a given point and a surface by using the normal of the nearest

point in the surface to the given point.

If n; is the unit normal vector of the design surface at the nearest point Qi on

P(u, v), which is also an orthogonal projection of the measured point R; on P(u, v),

then the oriented distance, d(R, Q), from R; to the design surface P(u, v) can be

defined as

a(R,, Qi) = n; * (R, - Q,) (4-4)

This function will produce a very accurate measure of the distance from a

point to a surface if the difference vector R - Q can be calculated with high

accuracy. A method for improving the accuracy of this calculation by exploiting

the orthogonality of the difference vector to the design surface tangent plane is

developed in Appendix C.

The oriented distance function has a form similar to (4-2), but retains the

positional sense of the unit normal vector n; at each projection on the design

surface.
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4.2.2.3 Constraint Assignment

Using the oriented distance as the constraint function, the localization will

have m constraints c;, one for each measured point Ri, defined as

c, = d(R, Q;) (4-5)

The constraints are assigned based upon the position of projections relative to the

isoparameter lines which define the leading edge region of the blade using the

following scheme. Assume the chordwise parametrization of the design surface in

the parameter u with u,, u2 the isoparameter lines at the leading edge boundaries.

Let E be the value of the constraint for projections in the leading edge region and 5,

the value of the constraint for other points. Typically, e << 5. If u; is the u

parameter in the design surface of the projection Qi, then constraints c;, can be

assigned to each measured point according to

- < ci 5 +-e (4-6)

if u I  u; 5 u 2 ,

or -6 5 c. < +8 (4-7)

if Ui < u1 or u i > u 2

4.3 Constrained Localization Algorithm

The constrained localization is the problem of determing the rotations and

translations which must be performed on the set of measured points so that they will

satisfy the required localization constraints. The problem can be summarized in the

following problem statement.
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For a set of m measured points Ri, having nearest point orthogonal projections Q; on

the parametric design surface P(u, v), where 1 5 i < m, determine the set of rigid body

rotations and translations (p, 0, V, t,, ty, t, such that the oriented distances from R; to Q;

satisfy the constraints c; as they are defined in (4-6) and (4-7)

As in the case of the unconstrained localization problem, the measured points are

operated upon by successive rotations followed by successive translations to produce a

new set of points r;, defined by

r; = [C]R; +t (4-8)

where t is again the translation vector with components t,, ty, t, and [C] is the rotational

transformation matrix given by

cos0cos -cososin sin0
[C] = cosVysin4+sinesinycos cosycos -sin0sinsinN -sinycose (4-9)

sinVsin-sincoscosy sincos+sinesin cosy cos0cosy

The problem of determining the set of six parameters which will allow the set of

measured points to satisfy the localization constraints is solved using the routine E04UCF

for nonlinear constrained optimization problems provided by the Numerical Algorithms

Group (NAG). The routine uses an iterative sequential quadratic programming (SQP)

algorithm in which the search direction is the solution of a quadratic programming (QP)

problem, [Gill 86], [NAG 89].

The nonlinear constrained optimization routine estimates gradients of user-supplied

functions with difference quotients unless the user can also supply those gradients. The

latter situation produces a great improvement in computational accuracy and efficiency.
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For this reason, part of the implementation of this algorithm involves providing symbolic

gradients (or equivalently Jacobians), for each of the functions that are supplied to the

NAG routine.

4.3.1 Global Objective Function

Although an objective function for the constrained localization is not minimized

as previously explained, the structure of the nonlinear constrained optimization

routine requires an objective function to be supplied. It is sufficient in this case to let

the objective function be defined simply as a constant.6 This is the simplest possible

definition for an objective function and it allows the optimization routine to work

accurately and rapidly. The objective function may be defined then as the following:

Determine , 0, i, tx, ty, t,, such that

OF(4, 0, V, tx, t, t,) = Constant (4-10)

4.3.2 Objective Function Jacobian

The NAG routine E04UCF requires the Jacobian of the objective function to be

supplied for most efficient operation. Since the objective function has been defined as

a constant, the Jacobian, which is the first partial derivative of the objective function

in each independent variable is identically equal to zero in all six variables.

6This simple but profound idea was first suggested by Dr. Nikiforos Papadakis of the MIT
Ocean Engineering Design Laboratory. He has conducted extensive research in optimization
methods.
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So the Jacobian of the objective function, Jo, may be defined as

:OF'

aOF

OF 0

a 0 (4-11)
Jo - OF 0

tOF 0

aOF

atz

Therefore the Jacobian for the constant objective function is the zero vector.

4.3.3 Constraint Function

The constraint function consists of inequality constraints on the oriented

distance function given as

d(Ri, Q,) = n, (R - Q;) (4-12)

If q; is the projection of a transformed measured point r i defined by (4-8), then a

new oriented distance function after a transformation operation will be given by

d(r, qi) = ni * (r - q,) (4-13)

At each iteration a new transformed measured point ri, and a new corresponding

minimum distance projection qi, are determined for each measured point R; existing

before the transformation. This procedure produces a new oriented distance d(r;, q)

for each measured point at each iteration, using the most recent transformed point as a

starting point for the computation of q;.
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4.3.4 Constraint Function Jacobian

The Jacobian for the constraint functions are the values of the first partial

derivatives of the functions in each of the independent variables of the problem. The

definition of the oriented distance function as the constraint function for this problem

allows these derivatives to be calculated in a straightforward manner.

Since the transformed oriented distance function is the constraint function for

the localization problem during any particular iteration step, the determination of the

Jacobian for this function consists of calculating a set of m first partial derivatives in

the six variables (p, 0, Vy, t,, ty, and t,. The Jacobian Ji, 1 5 i < m, for this problem may

thus be defined as

*ni. (ri - qi)'

n; * (r; - q;)

dn; * (r; - q;)

dn;i (r; - qi)

atx
on; * (ri - q;)

-n; * (r - qi)

atz

which when the partial derivatives are expanded is equivalent to
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Jdd(ri, qi)"

a (ri, qi)
ae

~2 (r;, q;)

Dd (ri, c.)~a(r, q )d(rj, q;)

(4-14)

an;. ([C]R, + t - q;))

an * ([C]RI + t- qi)

an; ([C]R + t - q)

an; * ([C]RI + t - q;)

at,

*n;i ([C]Ri + t - qi)

S([C]R + t - q

d - ([C]Ri + t - qj



([C]R, +t- ~) + nini

-
n;i
-

ani
-I
Dni

oni

aty

Dn;i

atz

*

It is clear that

- =0aJ' and
atx

a[c]
aty

= [0]
atz

(4-16)

By assumption, qi is an orthogonal projection of ri on P(u, v) and n; is the unit

normal vector to the surface P(u,v) at the projection qi. Therefore the vector

([C]R,+t-q 5) is collinear with the unit normal vector ni and the following

relationships exist:

Dqi
= n. a-

= nty

ani
* ([C]R, + t - q)

ani

Sq;
= n;- = 0

as;
= nia = 0

aJtz

([C]R, + t- qi) = 0

(4-17)

(4-18)

(4-19)
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*([C]R, + t- q) + ni

*([C]R, +t- q,) + ni*

*([C]Ri +t- q) + n;,

*([C]R;+t-cq) + ni

*([C]R; + t- q) + n,

C[C] +t

Ri +

[C]ta[C] at

R, + at,C ] tRy([C] t
I R; +

a;

at)

TsqBasi

(4-15)

ni t
ni ata q;

([C]R; + t - q;)



an; an an
- ([C]Ri + t - q) ([C]R, + t - q) = ([C]R, + t- q) = 0

at aty at
(4-20)

Now by using the expressions of (4-16) through (4-20) the Jacobian Ji defined in

(4-15) may be simplified to

i 4 )

ni * (t)a[c

ntyni * a(t)n, * a(t)
at

ana
n i - Ri

ly[C]
ni 9 Ri

n.

n

(4-21)

where n,', n' and n:' are the respective scalar components of the normal vector n;. The

rotational elements of the Jacobian require calculating the first partial derivatives of

the rotational transformation matrix [C] in each of the variables (p, 0 and N. Those

partial derivatives are given by the following three matrix equations.

a[C]
a

-cos e sin - cos 0 cos
- cos Vcosi- sinOsin sin -cos ysin- sin cos sin

sinycos +sinesin cosv -siniysin+ sinOcos4cos
(4-22)

-sinOcos
cos sin W cos

- Cos cos cosv

sin Osin
-cos 0sin siny
cos 0 sin cosy

cos 0
sinAVsine

- sin 0 cosj
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0 0 0(4-24)
= -sinysin4+sinOcosycos -sinycos -sinOsincosV -cosVcosO (4-24)

cos'ysin + sin0 cos sin i cos Vcos - sin0 sin sin v - cosesinyr

The rotational elements of the Jacobian are finally determined by multiplying

each of the three matrices of (4-15), (4-16) and (4-17) by R; and substituting the

results into (4-14).

4.4 Problem Solution

Using the constraint functions of (4-6) and (4-7) with the Jacobian of (4-14) as

inputs to the optimaization routine, iterative solutions are calculated seeking a feasible set

of rotations and translations to satisfy the constraints of the problem. The user provides

the values for the constraints, E and 8, which define the limits for the oriented distance

function for each measured point. The appropriate constraint is determined by the

proximity or non-proximity of a measured point to the leading edge of the design surface

blade. If the algorithm can find a feasible solution to the problem, that solution represents

a prescription for the rotations and translations which should be performed on the set of

measured points to localize them and satisfy the given constraints. If a feasible solution

cannot be found, then the user will need to either relax the specified constraints or remove

some measured points from the set that is analyzed.

Experimental results using the constrained localization method are presented in

Chapter 5.
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Chapter 5

APPLICATIONS OF LOCALIZATION

5.1 Introduction

The focus of this thesis is the development of reliable computational methods for

the solution of the localization problem for application in the inspection of manufactured

marine propellers. A theoretical basis for these methods was presented in Chapters 3 and

4, but if the methods cannot be used for the intended application, then their theoretical

development becomes only an academic exercise. The true value of the development can

only be demonstrated if the methods can be used to solve real problems with real data. It

is, therefore, important to show that the methods work using actual measured data and

actual designs from manufactured propellers.

At the beginning of the localization investigation it was decided that measured data

from a real manufactured propeller was essential to the development and validation of the

localization methods. The design description of a manufactured blade and a set of

measured data points from that blade were needed for testing of the localization methods

as they were developed. This need was identified at a periodic meeting of the

PRAXITELES user's group in October 1990. 7 Since it was expected that the results of the

localization investigation would produce an enhancement to PRAXITELES, the Applied

7PRAXITELES is an interactive geometric modeling system for sculptured curves and
surfaces. It has been developed in the Ocean Engineering Design Laboratory at MIT with
funding from various U. S. government agencies [Hottel 91], [Tuohy 91].
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Research Laboratory (ARL) at Pennsylvania State University agreed to provide design

and inspection data for a real propeller [Holter 90]. This design was a fan blade that had

been designed, manufactured and inspected at ARL.

At a subsequent PRAXITELES user's group meeting in January 1991 the

preliminary results of the unconstrained localization method were presented. At this time

it was suggested that a more complex test model for the localization method would be

useful. While the fan blade from ARL was certainly a propeller, it did not have the

complex sculptured geometry that would be typical of many marine propellers. For this

reason, Philadelphia Naval Shipyard (PNSY) agreed to provide the investigator with data

for another blade which would be more representative of marine propellers for

localization testing [Koehler 91].

The experimental results and validation of the developed methods for unconstrained

and constrained localization are presented in this chapter. Test results for the methods

will be presented for both the ARL and PNSY blades. It is believed that the experimental

results confirm the validity of the methods and provide a sound experimental basis for

further development.

5.2 Experimental Assumptions

An essential element of the localization process is the determination of the

minimum distance from a point to a surface and this distance calculation is related to the

orthogonal projection of the point onto the surface. The orthogonal projections can be

readily determined by exploiting some conditions that are assumed to exist in the normal

inspection of manufactured propellers:
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(1) The measured points on the manufactured surface can be expected to lie

sufficiently near to the design surface so that the minimum distance projection point

onto the design surface is uniue.s

(2) The measurements are made away from the tip, root edge or trailing edge of the

blade, so the minimum distance projection point is also an orthogonal projection of

the measured point onto the surface.

(3) The inspection device makes measurements by moving in an organized manner

over the blade. The measurement might be made in linear or curved passes, but it is

not random in its acquisition of data.9

If a cubic B-spline curve is fitted through a set of measured points using a least

squares fitting routine with chord length parametrization, then the orthogonal projection

of each fitted curve will provide a mapping of u,v parameters for each measured point in

the parametric space of the design surface. This mapping approximates the orthogonal

projection of each measured point having parameter t with the orthogonal projection of

the point on the least squares fitted curve having the same parameter t. Using these

parameters as a starting point, the orthogonal projection routine for a particular measured

point will converge rapidly to the parameters in the design surface which correspond to

the actual orthogonal projection. The method works because the measured points are

near the design surface for the manufactured surface under consideration, and because

8 Further analysis of this assumption can be found in [Patrikalakis 90], [Kriezis 90], [Kriezis
91], and [Wolter 85].
9This is not an essential assumption or a particularly strong one. The methods of
measurement for automated inspection normally involve numerical programming of the
inspection device that is analogous to the numerical programming of numerically controlled
machinery. The assumption of organized paths allows for straightforward correlation of sets
of measured data points and this correlation increases the efficiency of the localization
process.
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there are no discontinuities in the region of measurement. The method will not work at

points of discontinuity or at points which are very near to the cut loci of the blade [Wolter

85].'0

5.3 Applied Research Laboratory Propeller

The propeller design that was provided by ARL was received as a NURBS surface.

The inspection data was received as x, y, z coordinates of measured points on the blade

that was manufactured from the NURBS design description. These measurements were

made at ARL using the Intelligent Robotic Inpection System (IRIS), which uses laser

interferometry to obtain highly accurate measurements of surface coordinates. 1381 data

points were received representing measurements on the pressure and suction sides of the

blade. The design surface was a bicubic NURBS patch parameterized with 53 knots in

the u direction and 20 knots in the v direction. The blade had a nominal radius of 12

inches from root to tip.

Some minor preprocessing was required to get the measured data into a form that

was suitable for localization with the developed methods. The first step in this

preprocessing was to visually inspect the data received from ARL to establish a method

for correlating the inspection data points. This was accomplished by using the

visualization capabilities that exist in PRAXITELES. The blade and measured points from

ARL had the appearance shown in Figure 1.

'oThese unsatisfactory conditions typically exist at the trailing edge or tip of the blade, where
the minimum distance projection of a point onto the surface of the blade is not uniquely
defined. This fact is the basis for assumptions (1) and (2) above.
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Figure 1. ARL Propeller Blade Showing Measured Points

It was clear that the inspection measurements at ARL formed 10 correlated sets of

points. These 10 sets of points were segregated into 10 groups of points through which a

cubic B-spline curve was fit using a least squares approximation with chord length
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parametrization and zero internal knots." The orthogonal projection of the cubic B-spline

curve onto the design surface was used as the source of u,v parameters for initialization of

the orthogonal projection routines for individual measured points. With this initialization

the orthogonal projection routines converge rapidly to the u,v parameters in the design

surface for the actual orthogonal projection of each measured point. The u,v parameters

of the projection are identical to the u,v parameters in the design surface at the point of

minimum distance from the measured point. Using this information it is possible to

establish a baseline file which contains the original measured points, the u,v parameters in

the design surface at the points of minimum distance, and finally the minimum distances

themselves. The distances at each point in the file form an initial reference condition to

which the results of localization can be compared.

5.3.1 Unconstrained Localization Results

Further processing of the file containing the parametrizations of the minimum

distance points in the design surface was performed to ensure that experimental

assumption (2) was satisfied, i.e. to ensure that points in the interior of the blade were

well away from the trailing edge, root edge or tip of the blade. Visual inspection in

PRAXITELES revealed that chordwise measurements of the blade corresponded

closely with the u parameter of the design surface, and predictably the span of the

blade corresponded closely with the v parameter in the design surface. This condition

made it possible to remove points from the total set of measured points which might

nThis produces the simplest cubic B-spline, a Bezier curve. It is not necessary for the
method to use any more knots or higher order B-spline than this. Using a Bezier curve
provides for rapid fitting of the measured data points with sufficient accuracy to quickly find
an orthogonal projection from each point to the design surface.
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be too close to the tip or trailing edge of the blade. This was accomplished by

choosing points whose projections in the design surface had u,v parameters which

satisfied the condition (0.05 < u,v < 0.95). This resulted in an initial data file for

localization containing 1261 points, which was 8.7 per cent smaller than the original

set of data points.

&i

Root Mean Square Distance = (5-1)

The results of the unconstrained localization and the computational time

required for each set of points is presented in Table I.12 The translations and rotations

for each set of points after unconstrained localization are presented in Table II.

Table I

Number RMS Distance RMS Distance
of Before Localization After Localization Per Cent Computation

Points (inches) (inches) Change Time (CPU)

21 0.02371 0.01866 -21.3 0 min 40 sec

41 0.03196 0.02593 -18.9 1 min 25 sec

61 0.03016 0.02435 -19.3 1 min 56 sec

85 0.03130 0.02485 -20.6 2 min 45 sec

106 0.03010 0.02447 -18.7 4 min 9 sec

RMS Distances and Computation Times
for Unconstrained Localization of ARL Propeller

12The computations for the experimental results of this thesis were performed on a Silicon
Graphics 4D25TG "Personal Iris" machine running at a nominal speed of 1.6 million floating
point operations per second.
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Table II

Number Translation Rotation
of (inches) (radians)

Points tt t= <P 0

21 0.1796 -0.0215 -0.2896 0.0005 -0.0058 -0.0005

41 0.0887 -0.0627 -0.1069 0.0041 0.0005 -0.0023

61 0.1018 -0.0529 0.0538 0.0025 -0.0073 -0.0023

85 0.1094 -0.0645 0.0914 0.0034 -0.0077 -0.0028

106 0.0827 -0.0501 0.0135 0.0025 -0.0047 -0.0020

Translations and Rotations
for Unconstrained Localization of ARL Propeller

The transformation produced for the unconstrained localization of the ARL

propeller produced an average reduction in root mean square distance from the

sampled point set to the design surface of 19.8 per cent. The computational time

required for the entire set of 1261 points was 1 hour and 7 minutes, producing a

reduction in root mean square distance of 19.6 per cent.13

To test the validity of the transformation obtained using the unconstrained

localization method, the inverse of the transformation for the 21 point sample was

applied to the original design surface. When the same points were localized to the

transformed design surface the new transformation was the zero vector.

PRAXITELES was then used to obtain a set of points on the transformed design

'3 The computational time and reduction of root mean square distance for 1261 points is listed
as a benchmark for the the performance of the unconstrained localization method on a very
large data set. Although the results are consistent with those presented in Table I, they
should be considered only as a measure of the time required for a very large data set. Other
examples for very large data sets were not tested because of the long time required, and
because data sets larger than about 100 data points did not seem to have a statistically
significant effect upon the results of the localization process.

-45-



surface. When these points were localized relative to the original design surface, the

same transformation was produced as that using the 21 point sample of measured

points. These results provide experimental confirmation of the Euclidean property of

the localization transformation, as discussed earlier in Section 3.3 and shown in

Appendix A.

5.3.2 Constrained Localization Results

The constrained localization problem differs from the unconstrained localization

problem because measured points near the leading edge of a manufactured blade have

greater influence on the localization than do points in other parts of the blade. The

method uses the unconstrained localization as a starting point with the implicit

assumption that global minimization of distances of measured points to the design

surface is achieved before the start of the constrained localization. The constrained

localization algorithm also uses the oriented distance function as a distance measure

rather than the squared distance function. This distance function provides a highly

accurate estimate of distance and is fundamental to the constrained localization

method as developed in Chapter 4.

The constrained localization algorithm was evaluated using the same datasets

that were used for the unconstrained localization problem. The leading edge region

of the blade was defined as the set of u,v parameters of the design surface where the

condition (0.4 < u 5 0.6) existed. The non-leading edge region of the blade was

defined as the set of u,v parameters for which this condition did not occur. This

selection was based upon visual observation in PRAXITELES of the ARL blade. The

leading edge of the blade was almost exactly coincident with the isoparameter line
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u = 0.5 in the design surface of the blade. With this definition of the leading edge

region, the measured points are uniquely mapped to either a leading edge region or a

non-leading edge region based upon the value of the parameter u for the projection of

each point onto the design surface at the beginning of the constrained localization

process. Clearly the set of points in the leading edge region and the set of points in

the non-leading edge region are complementary subsets of the universal set of

measured points.

Since the testing of the constrained localization method was intended primarily

to demonstrate the viability of the method, the absolute magnitudes of the constraints

were not considered as important as the relative magnitudes of the constraints for each

region. Using this philosophy, the constraints were arbitrarily assigned with relative

magnitudes having a 10 to 1 ratio. This means that the distance constraint in the

non-leading edge region of the blade was assigned a magnitude of 10 times the

magnitude of the distance constraint in the leading edge region. This constraint

assignment strategy and the conditions necessary for a satisfactory constrained

localization can be summarized in the following statements.

(1) The constraints in the leading edge region of the blade have one-tenth the

magnitude of the constraints in the non-leading edge region of the blade.

(2) The condition for satisfactory constrained localization requires two

necessary corollary conditions:

a) All measured points that are assigned to the leading edge region of the

blade must have post-localization minimum distances to the design surface

which are less than or equal to the magnitude of the leading edge constraint.
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b) All measured points that are assigned to the non-leading edge region of the

blade must have post-localization minimum distances to the design surface

which are less than or equal to the magnitude of the non-leading edge

constraint.

The procedure that was used to evaluate the constrained localization algorithm

involved selecting a value for the leading edge and non-leading edge constraints

below the threshold where a feasible localization solution could be obtained for a

given set of measured data points. Observing that the fixed ratio between the

magnitudes of the constraints was always maintained, the values of the constraints

were incrementally increased until a feasible constrained localization solution could

be found. This experimental procedure thereby determined a lower bound on the

values of constraints which could produce feasible solutions to the constrained

localization problem for the given set of measured points.14 The experimental results

for the constrained localization of points near the leading edge and non-leading edge

regions of the ARL blade are presented in separate tables for clarity. The root mean

square distances, computed using equation (5-1), and the computation times for the

two regions are presented in Tables ll and IV.'5 The corresponding translations,

rotations and maximum distances are presented in Table V.

14 In a manufacturing setting the magnitudes of the constraints would be specified by the
blade designer. Those magnitudes might not have the same fixed ratio that was used in these
experiments.

5' The computation times shown in Tables II and IV are the same because the same sets of
points were used for each table. They are duplicated in the two tables for easy reference.
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Table III

Number Leading RMS Distance RMS Distance
of Edge Before Localization After Localization Per Cent Computational

Points Constraint (inches) (inches) Change Time (CPU)

21 0.012 in 0.01408 0.01014 -28.0 0 min 7 sec

41 0.012 in 0.02038 0.00888 -56.4 0 min 13 sec

61 0.017 in 0.01552 0.01290 -19.8 0 min 36 sec

85 0.017 in 0.01542 0.01168 -24.2 0 min 27 sec

106 0.017 in 0.01529 0.01046 -50.0 1 min 8 sec

RMS Distances and Computation Times
for Constrained Localization of ARL Propeller (Leading Edge)

Table IV

Number Non-Leading RMS Distance RMS Distance
of Edge Before Localization After Localization Per Cent Computational

Points Constraint (inches) (inches) Change Time (CPU)

21 0.12 in 0.02201 0.04251 +134.0 0 min 7 sec

41 0.12 in 0.02749 0.04241 +54.3 0 min 13 sec

61 0.17 in 0.02642 0.04877 +185.6 0 min 36 sec

85 0.17 in 0.02697 0.03902 +44.7 0 min 27 sec

106 0.17 in 0.02657 0.03935 +35.0 1 min 8 sec

RMS Distances and Computation Times
for Constrained Localization of ARL Propeller (Non-Leading Edge)
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Table V

Number Translation Rotation Leading Non-Leading
of (inches) (radians) Edge Edge

Points t" t, t, (P 0 Ay Max Distance Max Distance
21 0.1712 -0.0866 0.5881 0.0043 -0.0045 -0.0043 0.01200 in 0.11609 in
41 0.0821 -0.0324 -0.0966 0.0004 -.0096 -0.0011 0.01200 in 0.12000 in
61 -0.0018 0.0077 0.1717 -0.0038 -0.0054 -0.0008 0.01700 in 0.11643 in
85 -0.1185 -0.0887 0.6217 0.0040 -0.0084 -0.0051 0.01700 in 0.11593 in
106 -0.1788 -0.0629 0.6799 0.0034 -0.0062 -0.0036 0.01700 in 0.12961 in

Translations, Rotations and Maximum Distances
for Constrained Localization of ARL Propeller

It should be noted that the translation t, in Table V is typically much larger than

the translations t, and ty. This result is due to the particular orientation of the blade

relative to the axes of the coordinate system in which the measurements are made.

The z-axis in this example is nearly parallel to the span of the blade, so that points at

extreme positions of the z-axis must be near to the root edge and tip edge of the blade.

These are the points which limit translational motion along the z-axis [Gunnarsson

87a]. Since points very close to these edges are excluded from the data set at the

beginning of the localization, there are necessarily relatively few to constrain motion

in the z direction compared with the number of points that constrain motion in the x

and y directions.

The transformation produced for the constrained localization of the ARL

propeller reduced the root mean square distance from the sampled point set to the

design surface near the leading edge by an average of 35.7 per cent and increased the
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root mean square distance from the sampled point set to the design surface away from

the leading edge by an average of 90.7 per cent. The increase is a direct result of

reducing the root mean square distance near the leading edge and transforming the

point set away from a condition of global minimization. All points of each sampled

point set had an absolute distance which was less than or eaual to the listed constraint.

The effects of the constrained localization on the global root mean square distances

are presented in Table VI.

Table VI

Number RMS Distance RMS Distance
of Before Localization After Localization Per Cent

Points (inches) (inches) Change

21 0.01866 in 0.03155 in +69.1

41 0.02593 in 0.03825 in +47.4

61 0.02435 in 0.04325 in +72.7

85 0.02485 in 0.03483 in +38.4

106 0.02447 in 0.03535 in +41.9

Global Localization Effects
for Constrained Localization of ARL Propeller

The global root mean square distance for the ARL propeller increased an

average of 53.9 per cent for the five sampled point sets after the constrained

localization process.
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5.4 Philadelphia Naval Shipyard Propeller

The propeller information that was received from Philadelphia Naval Shipyard was

considerably more difficult to analyze than the data that was received from ARL because

PNSY could not provide an analytic design description of the propeller blade in the form

of a NURBS surface. Instead PNSY provided two sets of measurements of a

manufactured blade. This created significant problems because the localization methods

require a NURBS surface description of the design surface for their proper operation.

The measured data from PNSY was obtained using the Automated Propeller Optical

Measurement System (APOMS). It uses a laser interferometry technique similar to that

of the IRIS system at ARL. The measurements were made on a submarine propeller

blade that was manufactured many years ago by Philadelphia Naval Shipyard.' 6 The

blade had an approximate radius of 68 inches form root to tip, and was therefore about 6

times larger than the blade received from ARL.

In order to properly test the methods of unconstrained and constrained localization,

it was necessary to obtain a "design surface" from the set of measured points. This was

accomplished by least squares fitting of cubic B-spline curves through the measured data

points, followed by lofting a bicubic B-spline surface through the set of B-spline curves

'6 The measured data for this blade was certified by Commander, Philadelphia Naval
Shipyard and Naval Sea Systems Command (Code 56X73) to be not of a classifiable nature
in PNSY letter 9245, Code 266, Serial 9166002 of 6 February 1991.
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so generated. Chord length parametrization was used for the curves with sixty knots. 17

The surface which was produced could be used as a "design surface" for localization

testing with the implicit understanding that the surface is not the actual design surface as

in the case of the ARL blade, nor is it necessarily the best possible surface representation

of the measured data. The lofted surface is not identical to the surface from which the

blade was originally manufactured; it is merely an approximation of that surface. For this

reason the lofted surface will introduce some error into the localization process and will

ultimately reduce the level of accuracy that can be achieved from it.

The use of a lofted surface produced from measured data at PNSY as a "design

surface" arose out of necessity. It was not possible to obtain another blade with both a

NURBS surface description of the underlying design and with inspection data of the

manufactured blade as well. For this reason the PNSY design surface that was generated

through lofting must be viewed as a simulated design surface. This example is not as

good as the ARL example because the original design surface was not available for the

corresponding inspection data.'8 On the other hand, the example illustrates the usefulness

of the localization methods quite adequately.

17 A uniform spacing scheme was used for the distribution of internal knots and for ease in
lofting. The curve is not the very best approximation of the data; significant error arises near
the trailing edge region of the blade because of the sparcity of knots. Non-uniform knots
with a higher concentration of knots near the trailing edge would improve the approximation
for individual curves. However, this scheme would greatly increase the size and complexity
of the lofted surface and it was not deemed necessary for the demonstration of these
experiments.

l It should be noted that marine propeller design surfaces typically arise from lofting a
surface through a set of curves which describe a hydrofoil section. The surface so produced
is defined as the "design surface". Therefore the lofted surface of this example is a "design
surface". The important distinction is that this design surface is not the same design surface
as the one used for the manufacture of the propeller.
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Despite the previously mentioned problems, the set of "design" points that was

received from Philadelphia allowed a reasonably good blade surface to be generated. The

"design" points were received in 17 sets of cylindrical measurements taken in radial cuts

from the root to the tip of the blade. Each set of measurements contained 180 points

distributed around the surface of the blade. The B-spline curves generated from these

points and the bicubic NURBS surface that was lofted through them were all produced

using PRAXITELES. 19

The other set of measured points that was received from Philadelphia had similar

form to the 17 sets of points that were used to produce the design surface. There were 18

radial cuts taken on the pressure and suction sides of the blade at radii extending from 0.3

to 0.99. The points at radii above 0.90 are very close to the tip of the blade, so to ensure

that all points used were relatively far from the blade tip, only points taken at radii from

0.3 to 0.8 were used. These points and the lofted surface were visually inspected using

PRAXITELES. The "design" blade surface and measured points for this blade had the

appearance shown in Figure 2.20

19 The bicubic NURBS surface was generated using uniformly spaced internal knots with a
total of 17 knots in the u direction and 56 knots in the v direction. The selection of direction
for the u,v axes used for lofting was arbitrary. The resulting "design surface" parametric axes
are orthogonal to the ARL design surface parametric axes by pure coincidence.
20 As in the case of the unconstrained localization of the ARL blade the 12 "curves" of
measured data which are visible in Figure 2 were fitted with cubic Bezier curves to facilitate
finding the orthogonal projection of each measured point onto the design surface.

-54-



Figure 2. PNSY Propeller Blade Showing Measured Points

5.4.1 Unconstrained Localization Results

A total of 4077 measured inspection points from the manufactured blade were

received from Philadelphia. To prevent problems with points near parametric

boundaries of the design surface, these points were culled to a set of 3214 points by

imposing the same condition that was used for the ARL blade. Points were chosen

whose projections in the design surface had u,v parameters which satisfied the

condition (0.05 5 u, v < 0.95). This smaller set of points represented a 21 per cent

reduction in the number of measured points.
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Subsets of the global set of 3214 points were extracted for testing using the

same procedures as those used for the ARL blade. Points were pseudorandomly

selected over the pressure and suction sides to produce five sets of measured points

for evaluation. The points were distributed over the entire surface of the blade to

provide a good distribution of data. The root mean square distance, calculated using

(5-1), was again used as a measure of the performance of the unconstrained

localization algorithm. The results of the evaluation for five subsets of points are

presented in Tables VII and VIII.

Table VII

Number RMS Distance RMS Distance
of Before Localization After Localization Per Cent Computation

Points (inches) (inches) Change Time (CPU)

21 0.15599 0.11430 -26.7 1 min 14 sec

41 0.15798 0.09763 -38.2 2 min 51 sec

61 0.16103 0.11528 -28.4 2 min 20 sec

81 0.16291 0.10698 -34.3 2 min 44 sec

101 0.14236 0.10966 -23.0 3 min 20 sec

RMS Distances and Computation Times
for Unconstrained Localization of PNSY Propeller

Table VIII

Number Translation Rotation
of (inches) (radians)

Points tt t, p 0

21 0.1278 -0.0622 -0.1460 -0.0025 -0.0011 -0.0006

41 0.3079 -0.2866 -0.2232 0.0043 0.0029 0.0017

61 -0.0682 -0.4959 -0.0666 -0.0078 0.0028 -0.0011

81 0.1580 -0.5114 -0.1442 -0.0022 0.0035 0.0009

101 -0.0097 -0.4866 -0.0736 -0.0061 0.0030 -0.0006
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The unconstrained localization of the five sets of measured points reduced the

root mean square distance from the points to the design surface by an average of 30.1

per cent.

5.4.2 Constrained Localization Results

The constrained localization testing of the PNSY propeller used the same sets of

data and essentially the same procedures as those that were used for the ARL blade.

Points were assigned to a leading edge region or a non-leading edge region of the

blade based upon the position of the projection of the point onto the design surface at

the beginning of the constrained localization procedure. A procedural distinction

between the PNSY blade and the ARL blade was the direction of the u,v parameters in

the design surface. While the leading edge for the ARL blade was nearly coincident

with the isoparameter line u = 0.5, the PNSY blade had the leading edge nearly

coincident with the isoparameter line v = 0.5. This difference required a change in the

definition of the leading edge and non-leading edge regions of the blade. The leading

edge region of the blade was defined by the condition 0.4 < v 50.6. The

non-leading edge region of the blade was the region where this condition did not

occur. Using these definitions a given set of measured points was mapped to specific

regions of the design surface as was done with the ARL blade.

The same assignment of the ratio of constraint magnitudes was used as in the

ARL blade testing. The points assigned to a leading edge region had a constraint with

magnitude equal to one-tenth of the magnitude of the constraint for points in the

non-leading edge region of the blade. For testing of the process, the constraint for

-57-



each region was incrementally increased until a threshold was reached where a

feasible solution to the constrained problem was obtained. In this way, a lower bound

was determined for constraints which could provide feasible solutions to the problem

for each set of points. The experimental results using this procedure are presented in

Tables IX through XI.21

Table IX

Number Leading RMS Distance RMS Distance
of Edge Before Localization After Localization Per Cent Computational

Points Constraint (inches) (inches) Change Time (CPU)
21 0.11 in 0.13280 0.09419 -29.1 0 min 12 sec
41 0.12 in 0.11777 0.09560 -18.8 0 min 50 sec

61 0.12 in 0.10991 0.07713 -29.8 0 min 22 sec
81 0.15 in 0.12298 0.10382 -15.6 0 min 18 sec

101 0.13 in 0.11247 0.09010 -19.9 1 min 22 sec

RMS Distances and Computation Times
for Constrained Localization of PNSY Propeller (Leading Edge)

Table X

Number Non-Leading RMS Distance RMS Distance
of Edge Before Localization After Localization Per Cent Computational

Points Constraint (inches) (inches) Change Time (CPU)
21 1.1 in 0.10382 0.25875 +149.2 0 min 12 sec
41 1.2 in 0.08793 0.21682 +124.1 0 min 50 sec
61 1.2 in 0.11728 0.31872 +171.8 0 min 22 sec
81 1.5 in 0.09993 0.20267 +102.8 0 min 18 sec
101 1.3 in 0.10862 0.27141 +149.9 1 min 22 sec

RMS Distances and Computation Times
for Constrained Localization of PNSY Propeller (Non-Leading Edge)

21The computational times shown in Tables IX and X are the same because the tests were
performed at the same time using the same set of points. The times are duplicated for easy
reference.
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Table XI

Number Translation Rotation Leading Non-Leading
of (inches) (radians) Edge Edge

Points t, t t (P 0 V Max Distance Max Distance

21 0.1401 -0.0495 -0.1540 -0.0035 -0.0145 -0.0006 0.11000 in 0.48742 in

41 0.3222 -0.2930 -0.2317 0.0015 -0.0097 0.0021 0.12000 in 0.48649 in

61 -0.3292 0.2712 0.0487 -0.0160 -0.0196 -0.0065 0.11119 in 0.67443 in

81 0.1762 -0.4528 -0.2197 -0.0013 -0.0080 0.0021 0.14612 in 0.45780 in

101 -0.1731 0.2832 -0.1185 -0.0122 -0.0160 -0.0032 0.12856 in 0.60269 in

Translations, Rotations and Maximum Distances
for Constrained Localization of PNSY Propeller

The transformation produced for the constrained localization of the PNSY

propeller reduced the root mean square distance from the sampled point set to the

design surface near the leading edge by an average of 21.2 per cent. All points of

each sampled point set had an absolute distance which was less than or eaual to the

listed constraint. The transformation produced for the constrained localization of the

PNSY propeller increased the root mean square distance from the sampled point set to

the design surface away from the leading edge by an average of 139.6 per cent. This

increase was the result of reducing the root mean square distance near the leading

edge and transforming the point set away from a condition of global minimization.

The effects of the constrained localization on the global root mean square distances

are presented in Table XII.
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Table XII
Table XII

Number RMS Distance RMS Distance
of Before Localization After Localization Per Cent

Points (inches) (inches) Change

21 0.11430 0.21816 +90.8

41 0.09762 0.18954 +94.2

61 0.11528 0.27373 +137.4

81 0.10698 0.18020 +68.4

101 0.10966 0.23703 +116.1

Global Localization Effects
for Constrained Localization of PNSY Propeller

The global root mean square distance for the ARL propeller increased an

average of 101.4 per cent for the five sampled point sets after the constrained

localization process. The entire set of 3214 points was not tested.

The results of this test showed that the lower bound on the constraint generally

increased with the number of points tested, but not in all cases. The constraint for 81

points was higher than that for 101 points. An important consideration is that the

results represent only a feasible solution to the problem for a given set of points. This

solution is not intended to be a global minimization of the root mean square distance,

nor is it likely to be unique.

5.5 Unconstrained Localization of Multiple Surface Patches

A current practice in the design of marine propellers is to break the blade surface up

into several regions and to provide a separate design surface patch description for each

individual region, rather than providing a single surface description of the entire blade.

The blade may be broken up into separate patches for the leading edge, for the trailing
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edge, for the pressure side, for the suction side, for hub fillets, etc. Each of these regions

might in fact be broken into separate surfaces as well. It is, therefore, important that a

localization method for marine propellers be able to accomodate the multiple surface

patches that might exist in a real propeller design description.

The unconstrained localization algorithm presented in Chapter 3 was generalized to

accomodate multiple untrimmed NURBS patches. The two design surfaces and measured

points of the ARL and PNSY propellers were used to test the algorithm. Each design

surface was divided into three patches to represent the leading edge, pressure side and

suction side regions of a multiple surface blade. These three patches were used to

simulate the design representation of a multiple patch blade. It is assumed that all patches

of such a blade are untrimmed NURBS patches of orders M in u, and N in v,

(0 _ u, v : 1) with at least tangent plane continuity.

5.5.1 ARL Propeller Blade

PRAXITELES was used to split the ARL blade into NURBS patches comprising

approximately one-third of the original design surface each. The surface was split

along the two isoparameter lines u = 0.33 and u = 0.66, and each patch was

reparameterized such that (0 9 u,v : 1). Points were then assigned to the three

patches based upon the u,v parameters of the projection of each point onto the original

design surface. To allow for problems that might arise for points very near to

parametric boundaries, a "buffer" region of parametric values was assigned at the

boundaries of the three patches. This buffer region was set equal to 0.02 in each
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parameter, so that each patch was reduced by this amount around its edges. Using

these ideas the original design surface and the 1261 original measured points

produced three untrimmed patches and point sets having the following characteristics.

Pressure Side Patch (0.02 5 u 0.31 and 0.02 < v < 0.98) 402 points

Leading Edge Patch (0.35 5 u 5 0.64 and 0.02 < v 5 0.98) 394 points

Suction Side Patch (0.68 < u 0.98 and 0.02 < v < 0.98) 424 points

The points assigned to the three regions of the blade were pseudorandomly

selected to produce five sets of pseudorandom data as used in previous testing. (These

point sets had comparable numbers of points, but were not the same point sets.) The

root mean square distances from the sets of points to the surface patches were

calculated using (5-1). The results of the unconstrained localization of these sets of

data relative to the three surface patches are presented in Tables XIII and XIV.

Table XIII

Number RMS Distance RMS Distance
of Before Localization After Localization Per Cent Computation

Points (inches) (inches) Change Time (CPU)

20 0.03406 0.02574 -24.4 0 min 37 sec

41 0.03399 0.02416 -28.9 1 min 34 sec

61 0.03269 0.02517 -23.0 2 min 3 sec

82 0.03346 0.02524 -24.6 2 min 31 sec

102 0.03317 0.02576 -22.3 3 min 31 sec

RMS Distances and Computation Times
for Unconstrained Localization of Three Patches from ARL Propeller
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Table XIV

Number Translation Rotation
of (inches) (radians)

Points tt t 0

20 0.2275 -0.0673 -0.2386 0.0011 -0.0080 -0.0032

41 0.2090 -0.0801 -0.1102 0.0031 -0.0078 -0.0035

61 0.1018 -0.0587 0.1361 0.0035 -0.0005 -0.0022

82 0.1440 -0.0616 -0.0585 0.0029 -0.0063 -0.0026

102 0.1279 -0.0638 -0.0722 0.0031 -0.0043 -0.0026

Translations and Rotations
for Unconstrained Localization of Three Patches from ARL Propeller

Using the three patches from the ARL blade the unconstrained localization

algorithm produced a transformation which reduced the root mean square distance

from the points to the surface patches by an average of 24.6 per cent. The

unconstrained localization for a single patch which described the entire surface

produced an average reduction in root mean square distance of 19.8 per cent using

different sets of measured points.

5.5.2 PNSY Propeller Blade

Testing of multiple patches from the Philadelphia blade followed a scheme

virtually the same as that used for the ARL blade. The surface was split using

PRAXITELES, but since the blade was oriented with the leading edge at v = 0.5 in the

parametric space of the design surface, it was necessary to define the patches in terms
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of the parameter v rather than u. The 3214 points of the PNSY design surface were

assigned analogously to those in the ARL tests with the patches and point sets having

the following characteristics.

Pressure Side Patch (0.02 5 u _ 0.98 and 0.02 < v 5 0.31) 857 points

Leading Edge Patch (0.02 < u 5 0.98 and 0.35 v 5 0.64) 1146 points

Suction Side Patch (0.02 5 u 5 0.98 and 0.68 < v < 0.98) 939 points

When subsets of data points were once again generated from these sets of

points, the unconstrained localization algorithm was tested for the three patches of the

PNSY blade using exactly the same procedure as that which was used for the ARL

blade. The results of this testing are presented in Tables XV and XVI.

Table XV

Number RMS Distance RMS Distance
of Before Localization After Localization Per Cent Computation

Points (inches) (inches) Change Time (CPU)
21 0.19794 0.13681 -30.9 0 min 37 sec

41 0.17408 0.10136 -41.8 3 min 10 sec

61 0.16325 0.11439 -29.9 1 min 57 sec

82 0.15866 0.09463 -40.4 2 min 54 sec
102 0.15417 0.11440 -25.8 3 min 33 sec

RMS Distances and Computation Times
for Unconstrained Localization of Three Patches from PNSY Propeller
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Table XVI

Number Translation Rotation
of (inches) (radians)

Points t, t t, 19 0
20 -0.3495 -0.3568 -0.0381 -0.0149 -0.0003 -0.0029
41 0.2840 -0.4473 -0.1510 0.0010 -0.0024 -0.0011
61 0.1354 -0.6949 -0.1327 -0.0024 0.0035 0.0011
82 0.3346 -0.9238 -0.1712 0.0030 0.0063 0.0033
102 0.1685 -0.2034 -0.1401 -0.0012 0.0000 0.0000

Translations and Rotations
for Unconstrained Localization of Three Patches from PNSY Propeller

The localization algorithm produced a transformation which reduced the root

mean square distance from the points to the surface patches by an average of 33.8 per

cent. This compares with an average reduction of 30.1 per cent for the single patch

description of the blade with different sets of measured points.
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary of Results of Investigation

This thesis has presented the theoretical development and numerical

implementation in efficient computer codes of the unconstrained and constrained

localization algorithms for application to the automated inspection of marine propellers.

Experimental results using actual marine propeller designs with measured data have been

provided to demonstrate the validity of the method. In each example, it has been shown

that by using the rigid body transformation provided by the localization method a set of

measured inspection points can be brought into closer agreement with a design surface.

The unconstrained localization algorithm provides a method for minimizing the sum of

squares of minimum distances from the measured points to the surface. The constrained

localization algorithm provides a method for satisfying localized constraints, so that

points near particular regions of the design surface are brought closer to the surface than

other points near other regions of the surface. The latter method provides special

usefulness for the problem of localizing inspection points near the leading edge of a

marine propeller blade.

6.2 Projected Benefits of Investigation

It is presumed that the products of this investigation, in the form of the

unconstrained and constrained localization methods with associated computer codes, will
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find direct application in the inspection of manufactured marine propellers. The methods

are flexible in their requirements for input information, requiring only a NURBS

description of a blade and corresponding spatial coordinates of measured points on a

manufactured surface. These pieces of information can be readily obtained from existing

systems in the industry. The unconstrained localization method is expected to be used in

an investigation by Bird-Johnson Company of Walpole, Massachusetts and David Taylor

Research Center in Carderock, Maryland under a U. S. Navy contract." The method

would be used to evaluate the inspection results of an actual marine propeller blade.

Westinghouse Machinery Technology Division of Pittsburgh, Pennsylvania, the Applied

Research Laboratory at Pennsylvania State University, Metal Working Technology

Corporation of Johnstown, Pennsylvania and Martin Marietta Energy Systems at Oak

Ridge National Laboratory have all expressed interest in the process for future marine

propeller inspection applications. These applications are precisely ones which were

anticipated during the development of the method.

Beyond the direct application of the localization method which has already been

implemented, it is expected that the development will prove useful in the area of better

programming of work during propeller blade manufacturing. Specifically, it will be

possible to better evaluate initial blade castings by confidently determining if an initial

casting satisfies dimensional requirements. It is expected that fewer castings will be

wasted because the manufacturing engineer will be able to determine the proper

orientation of a casting to "find the blade" in a casting which might have otherwise been

rejected. It seems reasonable that the localization methods will aid in planning and

22 A preliminary users manual was produced directly from the work of this thesis to aid
designers and manufacturing engineers in using the available tools [Jinkerson 91].
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execution of postcasting work as well. In particular, if a blade is placed in the localized

position before it is attached to the hub, and if the attachment flange is made to conform

to the localized blade, then an improvement in the conformance of the overall propeller to

the original design can be expected. Finally, the localization method should be very

valuable in the inspection of a blade before final acceptance. If the transformation

returned from the localization process is smaller than specified tolerances for a specified

set of measured points, then the blade could be considered to satisfy the inspection

criteria for acceptance.

6.3 Areas for Further Investigation

Perhaps the one area of this work which shows the most need for further

investigation is the existing problem of finding a suitable orthogonal projection of

measured points at the boundaries of the design surface. In Chapter 5 the measured data

points were carefully selected to ensure that their orthogonal projections would fall well

within the parametric boundaries of the design surface. The localization methods, as they

presently exist, will fail if this condition is not satisfied. Such a situation needs to be

corrected. Extensive preprocessing of data is needed to ensure that the localization will

work for points near parametric boundaries. Further development is needed to provide a

value for the point projections at the boundaries.

In Chapter 4 an assumption in the development of the constrained localization

problem was that the projection of a measured point on the design surface would not

change during the localization process. Although this assumption is almost certainly

valid for very small rotations and translations, it constrains the flexibility and generality

of the process. Rather than fixing the mapping of measured points to assigned regions
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from beginning to end of the process, it would be desirable for the assignment to be

changeable as the projection of a point may change during the localization. This problem

is not expected to be trivial. It is expected that discontinuities will result as constraints

change dynamically, and these may be difficult to handle with current optimization codes.

More theoretical development will probably be necessary to address this problem.

Alternatively, a smooth bivariate function might be employed to represent the constraints

throughout the patch, rather than by using the piecewise constant constraints that were

used in this work.

The constrained localization problem in its present formulation produces a feasible

but not necessarily unique solution. It starts from a position of presumed global

minimization, which is hopefully achieved during the unconstrained localization process,

and seeks a condition which will satisfy local constraints. A much more difficult problem

is one which would optimize the solution to the constrained localization problem. It is

clear from the premise that the constrained problem starts from a global minimum, that

any subsequent solution cannot be an unconstrained global minimum. Such a solution

will however satisfy the optimality condition of constrained global minimization. A

related problem would be to show that the unconstrained localization does in fact produce

a global minimum.

Another area of investigation that would be worthwhile involves the application of

the localization methods, constrained and unconstrained to the problem of trimmed

NURBS patches. Untrimmed patches have been addressed in this work, but trimmed

patches will be more difficult. As a minimum, a satisfactory solution to the problem of

finding the orthogonal projection of a measured point at the boundaries of a design

surface must be found. Solution of the trimmed patch problem will, however, greatly



increase the generality of the localization methods.

The accuracy and efficiency of the constrained localization algorithm presented in

Chapter 4 was improved by providing symbolic Jacobians for the constraint function and

objective function. It is likely that the unconstrained localization algorithm could be

improved by supplying the Jacobian or higher order derivatives to the minimization

routine as well. The Jacobian for the squared distance function is derived in Appendix B.

An obvious next step in the future development of the localization process is to

implement it in the unconstrained localization algortihm.

A final area that is worthy of investigation involves the application of statistical

theory to the selection of measured points for evaluation and to the results produced from

the methods. While the simple root mean square distance measure is an appropriate one

for macroscopic evaluation of the results of the method, it would be very interesting to

apply some statistical measures to the results in order to evaluate the specific effects of

points in various regions of the blade. Furthermore, the selection of numbers of measured

points to be used in the evaluations of the examples of Chapter 5 was consistent but

arbitrary. Statistical experiments should be performed to determine the appropriate size

of point sets for a given set of measured data.
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Appendix A

DEMONSTRATION OF THE ORTHOGONALITY
OF THE ROTATIONAL TRANSFORMATION MATRIX

A 3 by 3 matrix [A] is defined to be orthogonal if it can be shown that

[A] [A]T = [A] T [A] = 13 (A-l)

where I, is the identity matrix of dimension 3.

It was asserted in Chapter 3 that the rotational transformation matrix presented there

was orthogonal. It will be shown through a direct, albeit somewhat tedious, application of

matrix algebra that equation (A-1) is satisfied and that the rotational transformation matrix is,

in fact, orthogonal. This fact has significance in the context of this work because it shows

that an inverse transformation of the rotational transformation matrix, identically equal in this

case to the transpose of the matrix, would return any point in space that was operated upon

by the matrix to its original position. The matrix then can represent a valid geometrical

transformation.

The rotational transformation matrix [C] is defined in (3-10) as

cos 0 cos -cos 0 sin sin
[C] = cosVsin+sinesinVcos cosycos -sinesinsinV -sinncosO (A-2)

sinVsin -sincoscosV sin cos +sinesincosV cos0cos)
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[C]T is then the transpose of [C], defined as

cosOcos cosNsin +sin+sinsincos sin~ysin4-sinOcoscosiV
[C] T  -cos0sin cosVcos4-sinOsinsin sinycos +sineos~cosy (A-3)

sin0 -sinycosO cos 0 cos V

Let the following assignments be made:

a = cos y c =cos0 e =cos
b = sinV d = sin 0 f = sin (A-4)

Using these assignments, the two matrices [C] and [C]T become

ce -cf d
[C] = af +dbe ae-dfb -bc (A-5)

bf-dea be +dfa ca

ce af+dbe bf-dea
[C] T = -cf ae-dfb be+dfa (A-6)

d - bc ca

Now let [A] = [C][C]T and [B] = [C]T[C]

Proceeding with the matrix multiplications,

A ll = (c2e2)+ (c 2 f)+(d2)

A12 = (acef + bcde2) + (-acef + bcdf2) + (-bcd)

A13 = (bcef - acde2) + (-bcef - acdf) + (acd)

A2 1 = (acef + bcde 2) + (-acef + bcdjf) + (-bcd)
(A-7)A22 = (a f2 + 2abdef + b2d2e2) + (a2e2 - 2abdef + b2d 2f) + (b2 c2 )

A2 3 = (abf2 - a2def + b2def - abd2 e2) + (abe2 + a 2def - b 2def - abd2fi) + (-abc2)
A31 = (bcef - acde 2) + (-bcef - acdjf) + (acd)

A32 = (abf2 + b 2def - a 2def - abd2e 2) + (abe 2 - b2def +a 2def - abd2f) + (-abc 2)

A33 = (b2fJ _ 2abdef + a2d 2e 2) + (b2e2 + 2abdef + a2d2f ) + (a2c2)
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B,, = (c2e2) + (a2f +2abdef +b 2d2e2)+(b 2f -2abdef +a 2d2 e2)
B1 2 = (-c 2ef) + (a 2ef - abd f + abde2 - b 2d 2ef) + (b 2ef + abdfi - abde2 - a 2d 2ef)

B1 3 = (cde) + (-abcf - b 2cde) + (abcf - a 2cde)

B2 1 = (-c2 ef) + (a 2ef + abde 2 - abdfi - d2 b 2ef) + (b 2ef - abde2 + abdf - a 2d 2ef)

B22 = (c 2f) + (a 2e2 - 2abdef + b2d 2f) + (b 2e 2 + 2abdef + a2 d 2f2) )  (A-8)

B23 = (-cdf) + (-abce + b2cdf) + (abce + a2cdf)

B3, = (cde) + (-abcf - b 2cde) + (abcf - a 2cde)

B32 = (-cdf) + (-abce + b2cdf) + (abce + a2 cdf)

B 33 = (d2) + (b2C2) + (a2C 2)

Using the trigonometric identity cos 2 a + sin2 a = 1, then

a +b 2  =+d2 e2 +f = 1 (A-9)

The equations in (A-7) and (A-8) can be simplified using these identities.

A = ce 2 + c 2f + d 2 = c2(e 2 +f) = C2 +d = 1

A12 = acef +bcde2 -acef +bcdf -bcd = bcde2+bcf -bcd = bcd(e +f- 1) = 0

A 13 = (bcef -acde2) + (-bcef - acdf) + (acd) = -acde - acdf + acd

- acd(-e'- f+ 1) = 0

A21 = (acef +bcde) + (-acef + bcdf) + (-bcd) = bcde' +bc 2 - bcd

= bcd(e2+f - 1) = 0
A, = (a2fj + 2abdef +b 2 de) + (a'e'- 2abdef + bd 2f) + (b c2)

= a2f +b2 d2 e 2 +a2 e 2 +b2 d2f +b'c2

=a'(e'+f)+b'd2 (e 2 +f)+b ' c =a ' +b2 d2 +b2 c= a'+b'(c'2+d)=a+b= 1 (A-
A2 = (abf - a'def +b def - abd'e') + (abe' + a'def - b2def - abdf ) + (-abc') (A-10)

= ab ( - d2 e2 +e' - d 2f) -c

= ab [1 - d'(e2 + 2f)- c'] = ab [1 - (C2 + d 2 )] = 0

A31 = (bcef - acde2 ) + (-bcef - ac 2 ) + (acd) = -acde2 - acd + acd

= acd[1 - (e'+f)] = 0

A32 = (abf +b2def -a2 def -abd'e) + (abe2 -b 'def +a 2def - abd2fj) + (-abc2 )
= abf - abd2e +abe' -abd 2f - ab c2

= ab(f-d 2e 2+e 2-d2 f-c ')= ab[1 -d 2 (e2 +)-c 2] = ab[1 -(d 2+c 2)] = 0

A3 = (b2 - 2abdef + a 2d2e 2) + (b2e2 +2abdef +a2 d2f) + (a c 2)
= b2f+a'd2 e2 + b2 e2 + a2df +a22 = b 2 (e2 +f)+a 2 d2(e2 + f) + a2c2

= b2 +a2 (2 +d 2) = a 2 +b ' = 1
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B,,11 = (c2e)+(a2f + 2abdef + b2d2e2)+(b2f2 - 2abdef + a'd'e')
= ce 2 +a2f +bd2 e2 +b2f +a de2

= c2e2 +f(a 2 +b 2)+d 2e 2(a 2 +b 2) = c 2e 2 +fl +d 2e2 = e 2(c2 +d2 ) +fl = e2 +j= 1

B,, = (-cef) +(a 2ef -abd +abde2- b2d2ef) + (b 2ef +ab -abde 2 - a2d2f)

= -c 2ef +a 2ef - b2 d 2ef +b 2ef - a 2d 2ef = -c 2ef + ef(a2 +b 2) - d ef (a 2 +b 2)

= ef[1 - (c 2 +d')] = 0
B13 = (cde) + (-abcf - b 2cde) + (abcf - a2cde) = cde - b 2cde -a 2 cde

= cde[1 - (a 2 +b 2)]= 0

B21 = (-c 2ef) + (a 2ef +abde 2 -ab - d2b2ef) + (b 2ef +abde2 +abtf - a 2d2 ef)

= -c 2ef +a'ef -d 2 b2 ef +b'ef -a'd 2 'ef = eff( +b) -d 2 ef(a+b') -c 2 (A-11)

= ef[1 - (c2 +d 2)] = 0

B22, = (C2 ) + (a2e 2 - 2abdef+bd 2ff) + (b2e 2 + 2abdef +a2d2f)

= c2 +ae2 +b 2d 2f +b 2e 2 +a 2df = cf+e2(a +b2 )+df(a 2 +b)
= e2 +(c2+d)= e2+f = 1

B23 = (-cdf) + (-abce + b 2cdf) + (abce + a2 cdf) = -cdf +b 2cdf +a2 cdf

= -cdf +b cdf +a 2cdf = cdf(a2 +b 2) - cdf= 0

B31 = (cde) + (-abcf - b 2cde) + (abcf- a2 cde) = cde - b2 cde - a 2cde

= cde - b2 cde -a 2 cde = cde[1 - (a 2 +b 2)]= 0

B 2 = (-cdf ) + (-abce + b2 cdf) + (abce +a cdf) = -cdf +b 2 cdf +a 2 cdf

= cdf[(a'+b 2) - 1] = 0
B33 = (d) + (b 2c 2) + (ac 2)= d 2 +b 2cZ+a 2= d2+c2(a + b 2) = c2+b 2= 1

From (A-10) and (A-11),

A11 =B11 =1 A 12 =B 1 =0 A13 =B 11=0

A2 =B21 = 0 A22 =B22 = 1 A23 =B 23 = 0 (A-12)
A31 =B 31 =0 A32 =B 32 =0 A33 =B 33 = 1

It is clear then that

[A] = [B] =13 [C][C ]T = [C ][C] = 13 (A-13)

The matrix [C] is therefore orthogonal.

QED
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An alternate proof of the orthogonality of the rotational transformation matrix, i.e. that

equation (A-1) is satisfied can be based upon the fact that

[C] = [E] [F] [G] (A-14)

where [E], [F] and [G] represent the three matrices on the right hand side of (3-10). It is easy

to show that these matrices are orthogonal.

1 0 0 cos 0 sin W cos4 -sin4 0
[C] cos -sin y 0 1 0 sin cos 0 (A-15)

O sinAV coswl -sin 0 cos0, O 0 1

1 0 0 ' 0 0
[E] [E] = 0 cos -sin 0  cosw siny =13 (A-16)

0 siny cosy N O -sinyV cosW

cos 0 0 sin 0 cos0 0 - sin W
[F] [F]T= 0 1 0 0 1 0 =3 (A-17)

-sine 0 cos0) sine 0 cos0)

cos4 -sin4 0) cos sin 0)
[G][G]T = sin cos 0I -sin cos o0 =I (A-18)

0 0 1 O 0 1,

Then using matrix properties from linear algebra:

([E] [F] [G])T ([E] [F] [G]) = [G]T [F] [E]T [E] [F] [G] (A-19)

[G]T [F]T [E]T [E] [F] [G] = [G]T [F]T ([E]T [E]) [F] [G] = [G ]T [F]T [F] [G] (A-20)

[G]T [F]T [F] [G] = [G]T ([F]T [F]) [G] = [Gf [G] = I 3  (A-21)

The commuted expression is shown similarly.

QED
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Although this proof is straightforward, and vastly simpler than the proof outlined in

(A-2) through (A-13), the former proof is useful because it provides an independent

verification of the symbolic correctness of (A-2).
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Appendix B

DERIVATION OF JACOBIAN

FOR SQUARED DISTANCE FUNCTION

The Jacobian of the squared distance function which is used as the objective function in

the unconstrained localization problem of Chapter 3 is estimated in the NAG routine E04JAF

by difference quotients. Because it is expected that another minimization routine could make

productive use of a symbolic Jacobian, the Jacobian for the squared distance function is

presented here. Such a routine could be the routine E04UCF used in Chapter 4, with

application to the unconstrained localization problem for enhanced precision and efficiency.

The derivation is analogous to that of the oriented distance function which was used as the

constraint function in the constrained localization problem of Chapter 4.

Recalling the notation of Chapters 3 and 4, assume again a parametric design surface,

P(u,v), a set of m measured points Ri, and the set of nearest points or projections, Q1. The

minimum distance from a measured point Ri to the design surface P(u, v) is defined as

d(R;, Qi) = I R, - Q; I = min, d [R;, P(u, v)] (B-1)

A new set of transformed points r;, can be obtained from the original set of measured

points R;, by the following operation:

r; = [C]Ri +t (B-2)

If r; is a transformed point given by equation (B-2), and q; is the projection of the

transformed point onto the design surface, then the transformed minimum squared

distance from r; to q;, [d(ri, q;)]2, may be defined as
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(B-3)[d(rl, qL)]2 = (r, - q) (r - %)

The Jacobian for the squared distance function is the set of first partial derivatives of

the squared distance function in the six independent variables of the problem. Since the

transformed minimum squared distance function is the objective function for the localization

problem during any particular iteration step, the determination of the Jacobian for this

function consists of calculating a set of m first partial derivatives in the six variables p, 0, yr,

t,, ty, and t,. The Jacobian J,, 1 < i 5 m, for this problem may thus be defined as

a[d(r;, q;)]2

S[d(r, q)]2

D[d(ri, qi)] 2

a[d(r;, q;)]2

jto
D[d(r,, qi)]2

ata[d(ri, q;)] 2
aty

"'(r, - qi) * (ri - q,)'

(r - q)* (r; - qi)
ae

a(r; - q;) * (ri - q,)

a(ri - qi). (ri - qi)

St,(r - q;) (r - q)

a(ri - qi) - (ri - q)

which when the partial derivatives are expanded is equivalent to
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[ C ] R i ] at L)

( [-C] t 4; r -

ae - --, 0)R,- '+ (r - q)
( a [c ]  ot aq). ;

2 Ri + T (r; - q)
2 (a[C]R t aq; (r - q,)

- y ;+ ty aty
(a[] & st q;,

2 j-Ri + W- , (r-q)

(B-5)

It is clear that

at0
and a[C]

tx

a[C]
y

D[0] 101 (B-6)

As developed in Chapter 4, by assumption, qi is an orthogonal projection of ri on

P(u, v) and ni is the unit normal vector to the surface P(u, v) at the projection q;. Therefore

the vector (ri - q,) is collinear with the unit normal vector ni and the following relationships

exist:

* (ri - q.) =

" (ri - q.) =

(r - q) =

(r 1- q) =
yqi

(r;-q) = 0

aq;

at*

(B-7)

(r;-q;) = 0 (B-8)

By using the expressions of (B-6) through (B-8) the Jacobian J; of (B-5) may be

simplified to
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a[C]
2 -R (r, - %)

8[C]2 -[] R (r; - 4 )

2 at (B-9)

at
2 * (ri - ql)

at

2 - (ri - 4 )

and this may be finally simplified to

2 a Ri (r; - 4 )  2 R; e (ri - qj)

2 Ri * (r; - q )  2 R (r - q)
-= )[C] (r-) = 2 [C]

Ri * (r; - q,) 2 Ri * (r; - q,) (B-10)

2e' * (r; - %) 2(r' - qx)
2e'. (r, - qj) 2(ry - q;)

2e'. (r; - q) 2(r' - q')

In this expression e.', ey' and e,' are unit vectors along the axes of the coordinate system which

are parallel to the components of the translation vector t. The three differences r,'-q,', r,'-q,'

and r,'-qz' are the scalar components of the difference vector r;-q;. The rotational elements of

the Jacobian require calculating the first partial derivatives of the rotational transformation

matrix [C] in each of the variables (p, 0 and xV. Those partial derivatives are given by the

following three matrix equations.
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a[C] -cosOsin - cos 0cos 0) (B-11)
- cosycos4-sinOsinlsin -cosysin9-sinOcostsin 0I

sinycos +sinOsin cosV -sinsin +sin0cos cos 0)

-[C] -sinOcos sin0 sin cos0 (B-12)
- cos0sin Mcos -cosOsinnsinV sin Vsin 0

-cos0cos cosAV cos0sin cos y -sin0cos y)

[C] 0 0 0 (B-13)
- sin y+ s+sinOcos ycos -sin cos - sinOsin cosy -cos ycose
cos Vsin + sin0cos sin yi cos Vcos - sin0sinsin -cos0siny

The rotational elements of the Jacobian are then determined by multiplying each of the

three matrices of (B-10), (B-11) and (B-12) by Ri and substituting the results into (B-10).

The Jacobian of (B-7) was not used in this investigation because the routine that was

implemented for the unconstrained localization problem could not use gradients supplied by

the user. It is expected that the use of this Jacobian would greatly improve the efficiency and

accuracy of the optimization process, and it is clear from this development that the Hessian

and other higher order partial derivatives could be readily derived.
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Appendix C

DETERMINATION OF PARAMETERS IN DESIGN SURFACE

FOR HIGH ACCURACY

MINIMUM DISTANCE CALCULATION

The very accurate determination of minimum distance from a point to a parametric

surface that is used in the oriented distance function of Chapter 4 uses the u and v parameters

in the design surface of the orthogonal projection of the given point onto the design surface.

Therefore the problem is to find as accurately as possible the pair of u, v parameters which

correspond to the projection of a given measured point onto the design surface.

In Chapter 3 a modified Newton algorithm (NAG routine E04KCF) was used to

determine the minimum distance from a measured point to the design surface for use in the

squared distance function. This method provides a fast and reasonably accurate

determination of the minimum distance by finding a minimum of the squared distance of the

measured point from an arbitrary point P(u,v) with parameters u,v in the vicinity of a starting

point approximation (Uo, Vo). Given the inherent inaccuracies of any minimization routine in

floating point arithmetic, the solution will be only approximate.23

An improvement in the accuracy of the calculation of minimum distance from a

measured point to the design surface can be achieved by using the orthogonality of the

projection to determine the values of the parameters u and v in the design surface. If the

values of u and v from the minimization routine are used as a starting point, then the

23 Using the NAG routine E04KCF in 16 digit floating point arithmetic, only 7 digits of
precision in the calculation of the paramters u and v for the minimum distance calculation
can typically be obtained.
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orthogonality condition, which by an assumption in section 3.2 must exist at the projection of

the measured point onto the design surface, provides a simple method for obtaining a very

accurate value for the minimum distance. The development of the method is similar to that

presented in Appendix C of [Kriezis 90].

Using the notation of Chapters 3 and 4, consider again the minimum distance d(Ri, Qi),

from a measured point R;, to the design surface P(u, v). Since Q; is defined as the projection

of Ri onto the design surface P(u, v), orthogonality necessarily requires that

(R - Q;) ,P(u,v) = 0 (C-l)

and

(R; - Q,) ,P(u, v) = 0 (C-2)

where

Q; = P(u,v) (C-3)

Given the necessary and sufficient conditions for orthogonality of (C-1) and (C-2), the

determination of the u and v parameters in the design surface P(u, v) which correspond to the

projection point Q; can be accomplished by finding the zeros in u and v which satisfy the

conditions of (B-1) and (B-2). So consider two functions Fl(u,v) and F 2(u,v), defined as

F,(u, v) = (R; - Q) * .,P(u, v) = (R - P(u, v)). ,P(u, v) (C-4)

and

F,(u, v) = (R; - Q,) - a,P(u, v) = (R - P(u, v)) * a,P(u, v) (C-5)
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The zeros in u and v for functions Fl(u,v) and F 2(u,v) are found using the NAG routine

C05PBF which utilizes another modified Newton method to find the zeros of multivariable

functions with the gradients in each variable supplied by the user.

The gradients for F,(u,v) and F2(u,v) can be expressed as

aI,F 1 = -- ,P(u,v) * aP(u,v) + (R; - P(u, v)). a,,P(u,v) (C-6)

aF2 = -,.P(u, v) * aP(u, v) + (Ri - P(u, v)) * a,,P(u, v) (C-7)

aF; = -,vP(u,v) aP(u,v) + (R - P(u,v)) . avP(u,v) (C-8)

aF2 = -,vP(u, v) * aP(u, v) + (Ri - P(u, v)) a)P(u, v) (C-9)

There is obviously a time penalty associated with the use of this method rather than the

simple minimization routine. The improvement in accuracy may justify the use of this

method when accuracy is more important than computational speed. In particular, this

method was employed in the oriented distance function computation used for the constrained

localization problem of Chapter 4.
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